受験算数アーカイブス
当サイトは受験生のお子様を持つ方々,中学受験算数を教えている・教えたい方々,算数・数学が好きな方々,など幅広い『大人のための』中学受験算数解説サイトです.

食塩水と消去算



ここでは食塩水の問題の応用編として,消去算を用いるパターンの確認をしてみましょう.



では問題です.


問題:A,B2種類の食塩水があります.AとBを2:3の割合で混ぜたら16%の食塩水ができ,3:2の割合で混ぜると12%の食塩水ができます.Aの濃度は何%ですか.

さっそくビーカー図あるいは面積図を描きたいところですが,このままでは情報が不足していてうまく描けません.

この問題ではA,Bの混ぜる割合が比でしか表されていないため,図が描けないわけですが,具体的な量で考えるとうまくゆきます.

つまり「AとBを2:3で混ぜる」というのを「AとBを200gと300g混ぜる」とすると考えやすくなるわけです.

同様に「AとBを3:2で混ぜる」というのを「AとBを300gと200g混ぜる」としてビーカー図を描いてみます.

しかし,この図ではA,Bそれぞれの食塩水の量が異なっているためうまく処理できません.この問題ではAの濃度が知りたいわけですから,「消去算の基本」で確認したとおり,「Bにそろえて消す」ことを考えます.

Bを何gにそろえるかはどう考えてもよいですが,ここでは200gと300gの最小公倍数で600gにそろえることにします.

ここで上下の食塩の差をとると,最終的に180−160=20gであることがわかります.今Bは同じ量にそろえているので,この20gの差はAで生じていることになります.

Aの食塩水の差は900−400=500gなので,Aの食塩水500gに食塩20gが含まれていることがわかります.


よってAの濃度は,

20÷500×100=4% となります.



文章題でも述べたように,「和差算」や「消去算」などの問題は色々な場面で複合問題として出題されます.今回は消去算と食塩水を複合した問題を取り上げました.ただ,「この問題は消去算が複合されてる」と気付くこと自体には大した意味はありません.大切なのは,どういう手法で解答にたどり着けるかを考えたときに「消去算」や「和差算」などの『考え方の引き出し』を素早く開けることができるようにしておくことなのです.



関連情報
受験算数アーカイブスTOP

コンテンツ
リンク